9780821847657-0821847651-Mathematical Biology (Ias/Park City Mathematics Series, 14)

Mathematical Biology (Ias/Park City Mathematics Series, 14)

ISBN-13: 9780821847657
ISBN-10: 0821847651
Edition: Ill
Author: James P. Keener, Mark A. J. Chaplain, and Philip K. Maini Mark A. Lewis
Publication date: 2009
Publisher: American Mathematical Society, IAS/Park City Mathematics Institute
Format: Hardcover 398 pages
FREE US shipping

Book details

ISBN-13: 9780821847657
ISBN-10: 0821847651
Edition: Ill
Author: James P. Keener, Mark A. J. Chaplain, and Philip K. Maini Mark A. Lewis
Publication date: 2009
Publisher: American Mathematical Society, IAS/Park City Mathematics Institute
Format: Hardcover 398 pages

Summary

Mathematical Biology (Ias/Park City Mathematics Series, 14) (ISBN-13: 9780821847657 and ISBN-10: 0821847651), written by authors James P. Keener, Mark A. J. Chaplain, and Philip K. Maini Mark A. Lewis, was published by American Mathematical Society, IAS/Park City Mathematics Institute in 2009. With an overall rating of 3.7 stars, it's a notable title among other books. You can easily purchase or rent Mathematical Biology (Ias/Park City Mathematics Series, 14) (Hardcover) from BooksRun, along with many other new and used books and textbooks. And, if you're looking to sell your copy, our current buyback offer is $0.3.

Description

Each summer the IAS/Park City Mathematics Institute Graduate Summer School gathers some of the best researchers and educators in a particular field to present lectures on a major area of mathematics. A unifying theme of the mathematical biology courses presented here is that the study of biology involves dynamical systems. Introductory chapters by Jim Keener and Mark Lewis describe the biological dynamics of reactions and of spatial processes. Each remaining chapter stands alone, as a snapshot of in-depth research within a sub-area of mathematical biology. Jim Cushing writes about the role of nonlinear dynamical systems in understanding complex dynamics of insect populations. Epidemiology, and the interplay of data and differential equations, is the subject of David Earn's chapter on dynamic diseases. Topological methods for understanding dynamical systems are the focus of the chapter by Leon Glass on perturbed biological oscillators. Helen Byrne introduces the reader to cancer modeling and shows how mathematics can describe and predict complex movement patterns of tumors and cells. In the final chapter, Paul Bressloff couples nonlinear dynamics to nonlocal oscillations, to provide insight to the form and function of the brain. The book provides a state-of-the-art picture of some current research in mathematical biology. Our hope is that the excitement and richness of the topics covered here will encourage readers to explore further in mathematical biology, pursuing these topics and others on their own. The level is appropriate for graduate students and research scientists. Each chapter is based on a series of lectures given by a leading researcher and develops methods and theory of mathematical biology from first principles. Exercises are included for those who wish to delve further into the material.
Rate this book Rate this book

We would LOVE it if you could help us and other readers by reviewing the book