9780136730989-0136730981-Introduction to Cryptography with Coding Theory

Introduction to Cryptography with Coding Theory

ISBN-13: 9780136730989
ISBN-10: 0136730981
Edition: 3
Author: Lawrence Washington, Wade Trappe
Publication date: 2020
Publisher: Pearson
Format: Paperback 640 pages
FREE US shipping

Book details

ISBN-13: 9780136730989
ISBN-10: 0136730981
Edition: 3
Author: Lawrence Washington, Wade Trappe
Publication date: 2020
Publisher: Pearson
Format: Paperback 640 pages

Summary

Introduction to Cryptography with Coding Theory (ISBN-13: 9780136730989 and ISBN-10: 0136730981), written by authors Lawrence Washington, Wade Trappe, was published by Pearson in 2020. With an overall rating of 3.7 stars, it's a notable title among other books. You can easily purchase or rent Introduction to Cryptography with Coding Theory (Paperback) from BooksRun, along with many other new and used books and textbooks. And, if you're looking to sell your copy, our current buyback offer is $0.44.

Description

Brief Table of Contents

  • Overview of Cryptography and Its Applications
    • 1.1 Secure Communications
    • 1.2 Cryptographic Applications
  • Classical Cryptosystems
    • 2.1 Shift Ciphers
    • 2.2 Affine Ciphers
    • 2.3 The VigenÈre Cipher
    • 2.4 Substitution Ciphers
    • 2.5 Sherlock Holmes
    • 2.6 The Playfair and ADFGX Ciphers
    • 2.7 Enigma
    • 2.8 Exercises
    • 2.9 Computer Problems
  • Basic Number Theory
    • 3.1 Basic Notions
    • 3.2 The Extended Euclidean Algorithm
    • 3.3 Congruences
    • 3.4 The Chinese Remainder Theorem
    • 3.5 Modular Exponentiation
    • 3.6 Fermat and Euler
    • 3.7 Primitive Roots
    • 3.8 Inverting Matrices Mod n
    • 3.9 Square Roots Mod n
    • 3.10 Legendre and Jacobi Symbols
    • 3.11 Finite Fields
    • 3.12 Continued Fractions
    • 3.13 Exercises
    • 3.14 Computer Problems
  • The One-Time Pad
    • 4.1 Binary Numbers and ASCII
    • 4.2 One-Time Pads
    • 4.3 Multiple Use of a One-Time Pad
    • 4.4 Perfect Secrecy of the One-Time Pad
    • 4.5 Indistinguishability and Security
    • 4.6 Exercises
  • Stream Ciphers
    • 5.1 Pseudo-Random Bit Generation
    • 5.2 LFSR Sequences
    • 5.3 RC4
    • 5.4 Exercises
    • 5.5 Computer Problems
  • Block Ciphers
    • 6.1 Block Ciphers
    • 6.2 Hill Ciphers
    • 6.3 Modes of Operation
    • 6.4 Multiple Encryption
    • 6.5 Meet-in-the-Middle Attacks
    • 6.6 Exercises
    • 6.7 Computer Problems
  • The Data Encryption Standard
    • 7.1 Introduction
    • 7.2 A Simplified DES-Type Algorithm
    • 7.3 Differential Cryptanalysis
    • 7.4 DES
    • 7.5 Breaking DES
    • 7.6 Password Security
    • 7.7 Exercises
    • 7.8 Computer Problems
  • The Advanced Encryption Standard: Rijndael
    • 8.1 The Basic Algorithm
    • 8.2 The Layers
    • 8.3 Decryption
    • 8.4 Design Considerations
    • 8.5 Exercises
  • The RSA Algorithm
    • 9.1 The RSA Algorithm
    • 9.2 Attacks on RSA
    • 9.3 Primality Testing
    • 9.4 Factoring
    • 9.5 The RSA Challenge
    • 9.6 An Application to Treaty Verification
    • 9.7 The Public Key Concept
    • 9.8 Exercises
    • 9.9 Computer Problems
  • Discrete Logarithms
    • 10.1 Discrete Logarithms
    • 10.2 Computing Discrete Logs
    • 10.3 Bit Commitment
    • 10.4 Diffie-Hellman Key Exchange
    • 10.5 The ElGamal Public Key Cryptosystem
    • 10.6 Exercises
    • 10.7 Computer Problems
  • Hash Functions
    • 11.1 Hash Functions
    • 11.2 Simple Hash Examples
    • 11.3 The Merkle-Damg ̊ard Construction
    • 11.4 SHA-2
    • 11.5 SHA-3/Keccak
    • 11.6 Exercises
  • Hash Functions: Attacks and Applications
    • 12.1 Birthday Attacks
    • 12.2 Multicollisions
    • 12.3 The Random Oracle Model
    • 12.4 Using Hash Functions to Encrypt
    • 12.5 Message Authentication Codes
    • 12.6 Password Protocols
    • 12.7 Blockchains
    • 12.8 Exercises
    • 12.9 Computer Problems
  • Digital Signatures
    • 13.1 RSA Signatures
    • 13.2 The ElGamal Signature Scheme
    • 13.3 Hashing and Signing
    • 13.4 Birthday Attacks on Signatures
    • 13.5 The Digital Signature Algorithm
    • 13.6 Exercises
    • 13.7 Computer Problems
  • What Can Go Wrong
    • 14.1 An Enigma ''Feature''
    • 14.2 Choosing Primes for RSA
    • 14.3 WEP
    • 14.4 Exercises
  • Security Protocols
    • 15.1 Intruders-in-the-Middle and Impostors
    • 15.2 Key Distribution
    • 15.3 Kerberos
    • 15.4 Public Key Infrastructures (PKI)
    • 15.5 X.509 Certificates
    • 15.6 Pretty Good Privacy
    • 15.7 SSL and TLS
    • 15.8 Secure Electronic Transaction
    • 15.9 Exercises
  • Digital Cash
    • 16.1 Setting the Stage for Digital Economies
    • 16.2 A Digital Cash System
    • 16.3 Bitcoin Overview
    • 16.4 Cryptocurrencies
    • 16.5 Exercises
  • Secret Sharing Schemes
    • 17.1 Secret Splitting
    • 17.2 Threshold Schemes
    • 17.3 Exercises
    • 17.4 Computer Problems
  • Games
    • 18.1 Flipping Coins over the Telephone
    • 18.2 Poker over the Telephone
    • 18.3 Exercises
  • Zero-Knowledge Techniques
    • 19.1 The Basic Setup
    • 19.2 The Feige-Fiat-Shamir Identification Scheme
    • 19.3 Exercises
  • Information Theory
    • 20.1 Probability Review
    • 20.2 Entropy
    • 20.3 Huffman Codes
    • 20.4 Perfect Secrecy
    • 20.5 The Entropy of English
    • 20.6 Exercises
  • Elliptic Curves
    • 21.1 The Addition Law
    • 21.2 Elliptic Curves Mod p
    • 21.3 Factoring with Elliptic Curves
    • 21.4 Elliptic Curves in Characteristic 2
    • 21.5 Elliptic Curve Cryptosystems
    • 21.6 Exercises
    • 21.7 Computer Problems
  • Pairing-Based Cryptography
    • 22.1 Bilinear Pairings
    • 22.2 The MOV Attack
    • 22.3 Tripartite Diffie-Hellman
    • 22.4 Identity-Based Encryption
    • 22.5 Signatures
    • 22.6 Keyword Search
    • 22.7 Exercises
  • Lattice Methods
    • 23.1 Lattices
    • 23.2 Lattice Reduction
    • 23.3 An Attack on RSA
    • 23.4 NTRU
    • 23.5 Another Lattice-Based Cryptosystem
    • 23.6 Post-Quantum Cryptography?
    • 23.7 Exercises
  • Error Correcting Codes
    • 24.1 Introduction
    • 24.2 Error Correcting Codes
    • 24.3 Bounds on General Codes
    • 24.4 Linear Codes
    • 24.5 Hamming Codes
    • 24.6 Golay Codes
    • 24.7 Cyclic Codes
    • 24.8 BCH Codes
    • 24.9 Reed-Solomon Codes
    • 24.10 The McEliece Cryptosystem
    • 24.11 Other Topics
    • 24.12 Exercises
    • 24.13 Computer Problems
  • Quantum Techniques in Cryptography
    • 25.1 A Quantum Experiment
    • 25.2 Quantum Key Distribution
    • 25.3 Shor''s Algorithm
    • 25.4 Exercises
  • Mathematica® Examples>
    • A.1 Getting Started with Mathematica
    • A.2 Some Commands
    • A.3 Examples for Chapter 2
    • A.4 Examples for Chapter 3
    • A.5 Examples for Chapter 5
    • A.6 Examples for Chapter 6
    • A.7 Examples for Chapter 9
    • A.8 Examples for Chapter 10
    • A.9 Examples for Chapter 12
    • A.10 Examples for Chapter 17
    • A.11 Examples for Chapter 18
    • A.12 Examples for Chapter 21
  • Maple® Examples
    • B.1 Getting Started with Maple
    • B.2 Some Commands
    • B.3 Examples for Chapter 2
    • B.4 Examples for Chapter 3
    • B.5 Examples for Chapter 5
    • B.6 Examples for Chapter 6
    • B.7 Examples for Chapter 9
    • B.8 Examples for Chapter 10
    • B.9 Examples for Chapter 12
    • B.10 Examples for Chapter 17
    • B.11 Examples for Chapter 18
    • B.12 Examples for Chapter 21
  • MATLAB® Examples
    • C.1 Getting Started with MATLAB
    • C.2 Examples for Chapter 2
    • C.3 Examples for Chapter 3
    • C.4 Examples for Chapter 5
    • C.5 Examples for Chapter 6
    • C.6 Examples for Chapter 9
    • C.7 Examples for Chapter 10
    • C.8 Examples for Chapter 12
    • C.9 Examples for Chapter 17
    • C.10 Examples for Chapter 18
    • C.11 Examples for Chapter 21
  • Sage Examples
    • D.1 Computations for Chapter 2
    • D.2 Computations for Chapter 3
    • D.3 Computations for Chapter 5
    • D.4 Computations for Chapter 6
    • D.5 Computations for Chapter 9
    • D.6 Computations for Chapter 10
    • D.7 Computations for Chapter 12
    • D.8 Computations for Chapter 17
    • D.9 Computations for Chapter 18
    • D.10 Computations for Chapter 21
  • E. Answers and Hints for Selected Odd-Numbered Exercises F. Suggestions for Further Reading Bibliography Index

Rate this book Rate this book

We would LOVE it if you could help us and other readers by reviewing the book