9780691167039-0691167036-Quantitative Social Science: An Introduction

Quantitative Social Science: An Introduction

ISBN-13: 9780691167039
ISBN-10: 0691167036
Edition: Illustrated
Author: Imai, Kosuke
Publication date: 2018
Publisher: Princeton University Press
Format: Hardcover 432 pages
FREE shipping on ALL orders

Book details

ISBN-13: 9780691167039
ISBN-10: 0691167036
Edition: Illustrated
Author: Imai, Kosuke
Publication date: 2018
Publisher: Princeton University Press
Format: Hardcover 432 pages

Summary

Acknowledged authors Imai, Kosuke wrote Quantitative Social Science: An Introduction comprising 432 pages back in 2018. Textbook and eTextbook are published under ISBN 0691167036 and 9780691167039. Since then Quantitative Social Science: An Introduction textbook was available to sell back to BooksRun online for the top buyback price of $ 3.48 or rent at the marketplace.

Description

An introductory textbook on data analysis and statistics written especially for students in the social sciences and allied fields

Quantitative analysis is an increasingly essential skill for social science research, yet students in the social sciences and related areas typically receive little training in it―or if they do, they usually end up in statistics classes that offer few insights into their field. This textbook is a practical introduction to data analysis and statistics written especially for undergraduates and beginning graduate students in the social sciences and allied fields, such as economics, sociology, public policy, and data science.

Quantitative Social Science engages directly with empirical analysis, showing students how to analyze data using the R programming language and to interpret the results―it encourages hands-on learning, not paper-and-pencil statistics. More than forty data sets taken directly from leading quantitative social science research illustrate how data analysis can be used to answer important questions about society and human behavior.

Proven in the classroom, this one-of-a-kind textbook features numerous additional data analysis exercises and interactive R programming exercises, and also comes with supplementary teaching materials for instructors.

  • Written especially for students in the social sciences and allied fields, including economics, sociology, public policy, and data science
  • Provides hands-on instruction using R programming, not paper-and-pencil statistics
  • Includes more than forty data sets from actual research for students to test their skills on
  • Covers data analysis concepts such as causality, measurement, and prediction, as well as probability and statistical tools
  • Features a wealth of supplementary exercises, including additional data analysis exercises and interactive programming exercises
  • Offers a solid foundation for further study
  • Comes with additional course materials online, including notes, sample code, exercises and problem sets with solutions, and lecture slides
Rate this book Rate this book

We would LOVE it if you could help us and other readers by reviewing the book